A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients for aerobic cometabolism of 1,1,1-trichloroethane by a butane-grown mixed culture.

نویسندگان

  • Young Kim
  • Daniel J Arp
  • Lewis Semprini
چکیده

A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients is developed and presented. The method was validated by applying it to data obtained from batch kinetics of the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) by a butane-grown mixed culture. The maximum degradation rates (k(max)) and half-saturation coefficients (K(s)) were independently determined in single compound tests, and compared with those obtained from inhibition tests. The inhibition type was determined using direct linear plots at various substrate and inhibitor concentrations. Kinetic parameters (k(max) and K(s)) and inhibition coefficients (K(ic) and K(iu)) were determined by nonlinear least squares regression (NLSR) fits of the inhibition model determined from the direct linear plots. Initial guesses of the kinetic parameters for NLSR were determined from linearized inhibition equations that were derived from the correlations between apparent maximum degradation rates (k(app)(max)) and/or the apparent half-saturation coefficient (K(app)(s)) and the k(max), K(s), and inhibitor concentration (I(L)) for each inhibition equation. Two different inhibition types were indicated from the direct linear plots: competitive inhibition of 1,1,1-TCA on butane degradation, and mixed inhibition of 1,1,1-TCA transformation by butane. Good agreement was achieved between independently measured k(max) and K(s) values and those obtained from both NLSR and the linearized inhibition equations. The initial guesses of all the kinetic parameters determined from linear plots were in the range of the values estimated from NLSR analysis. Overall the results show that use of the direct linear plot method to identify the inhibition type, coupled with initial guesses from linearized plots for NLSR analysis, results in an accurate method for determining inhibition types and coefficients. Detailed studies with pure cultures and purified enzymes are needed to further demonstrate the utility of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture.

Batch kinetic and inhibition studies were performed for the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethylene (1,1-DCE), and 1,1-dichloroethane (1,1-DCA) by a butane-grown mixed culture. These chlorinated aliphatic hydrocarbons (CAHs) are often found together as cocontaminants in groundwater. The maximum degradation rates (k(max)) and half-saturation coefficients (...

متن کامل

Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene.

A field study was performed to evaluate the potential for in-situ aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp. strains named 179BP and 183BP that could cometabolize 1,1,1-TCA and 1,1-dicholoroethene (1,1-DCE). Batch tests indicated that 1,1-DCE was more rapidly transformed than 1,1...

متن کامل

Chloroform Cometabolism by Butane-Grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and Methane-Grown Methylosinus trichosporium OB3b.

Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane i...

متن کامل

Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-grown mixed culture.

Aerobic cometabolism of cis-1,2-dichloroethylene (c-DCE) by a butane-grown mixed culture was evaluated in batch kinetic tests. The transformation of c-DCE resulted in the coincident generation of c-DCE epoxide. Chloride release studies showed approximately 75% oxidative dechlorination of c-DCE. Mass spectrometry confirmed the presence of a compound with mass-to-charge-fragment ratios of 112, 83...

متن کامل

A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes.

1,1,1-trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 77 5  شماره 

صفحات  -

تاریخ انتشار 2002